Sol Voltaics uses nanotechnology to make solar energy 25% efficient

nanowiresx299Sol Voltaics using nanotechnology to build solar cell modules that are up to 25 percent more efficient than the cells currently on the market. If the company can deliver its SolInk material as advertised, then it could make it a lot cheaper to introduce solar cells to a broader set of customers.

SolInk™, an economical nanomaterial that promises to increase the efficiency of crystalline silicon or thin film solar modules by up to 25 percent or more, leading to solar power plants and rooftop solar arrays that will generate far more electricity than today’s best commercially available systems.

The increase in efficiency will allow SolInk-enhanced panels to deliver power at prices that competes directly against electricity from fossil fuel plants while improving the economics for manufacturers. Global demand for solar energy is expected to grow from 29.8 gigawatts of new solar installations in 2012 to 50.8 gigawatts in 2016.

Ga-assisted GaAs1−xPx nanowires grown directly on silicon.

(a) Scanning electron microscope image of GaAsP nanowires, each having a Ga droplet on top. The nanowires are seen from above at an angle of 25°. Scale bar, 1 μm. (b) Transmission electron microscope image showing the upper part of a Ga…

The best way to lower the cost of solar power is to raise the efficiency of solar modules,. “Approximately two-thirds of the cost of commercial solar systems revolves around land, labor costs and other factors that solar developers can’t directly control. By raising the efficiency of solar modules, we give solar manufacturers the opportunity to sell more valuable, higher-margin products and solar developers the opportunity to generate more power at a lower price with essentially the same physical assets.”.

Sol Voltaics’ strategy revolves around two fundamental technologies: gallium arsenide nanowires, thin strands of material that constitute the active ingredient in SolInk, and Aerotaxy™, an innovative process for producing nanowires created by company founder and Lund University professor Lars Samuelson. Gallium arsenide has been used in solar for years because of its reliability and high conversion efficiencies: orbiting satellites employ solar cells made from the material to power their internal systems. Gallium arsenide solar cells, however, typically cost far more to produce than crystalline silicon or thin film cells, thereby confining the material to niche market segments.

SolInk dramatically reduces the cost by minimizing materials: less than a gram of nanowires is added to crystalline silicon panels. With SolInk, module manufacturers can make commercially feasible, high efficiency gallium arsenide solar modules or multi-junction solar modules combining gallium arsenide and crystalline silicon.

SolInk also enables light concentration without the use of optics or mechanical components. Nanowires need only cover a small portion of the surface area of a crystalline silicon or thin film solar cell to achieve substantially all of the benefits of adding gallium arsenide. In a research paper published in Science earlier this year, Lund University and Sol Voltaics researchers demonstrated that indium phosphide nanowires covering just 12 percent of the substrate surface produced a solar cell with an efficiency of 13.8 percent. The results were certified by the Fraunhofer Institute. The phenomenon, called Wave Concentrated Photovoltaics (WCPV), combined with the other advantages of gallium arsenide nanowires leads to ground-breaking performance for SolInk.


Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s